
Web Spider Performance and Data
Structure Analysis

Sadi Evren SEKER

Department of Computer Engineering, Istanbul University, Istanbul,

Turkey
academic@sadievrenseker.com

Abstract. The aim of this study is performance evaluation
of a web spider which almost all search engines utilize
during the web crawling. A data structure is required to
keep record of pages visited and the keywords extracted
from the web site during the web crawling. The paper first
goes into the detail of possible data structures for a web
spider and critics all possibilities depending on their time
and memory efficiencies. Furthermore the possibilities are
narrowed into tree variations only and a tree is selected
from each tree data structure family. Finally, a search
engine is implemented and all the tree alternatives from
each of the tree data structure family are also
implemented and the performance of each alternative is
benchmarked.

Keywords: Web Spider, Web Crawling, Web Indexing,
Benchmarking, Data Structures

 1 Introduction
In the date of this study, there are 2 kind of possible

web sources for the Internet surfers. A user trying to
access information on the Internet can either use the
directories or the search engines. Directories are
hierarchical index lists of sites; they list sites by topic.
They are widely used and in many cases offer an
extremely great source of information. However, they
have few problems: [1]

• Hierarchies are very vulnerable. Data and its
classifications change constantly. This also leads
to changes in hierarchy. A good example of this
is DMOZ [2], world’s largest directory. Several
subcategories are created, removed or deleted
each day.

• Most directories rely on human intelligence and
are manually edited. They can never compete
with search engines in amount of information.
However, quantity is never as important as
quality.

This paper concentrates on the search engine

architecture rather than the hierarchical indexing.
Anatomy of a search engine can be demonstrated as Fig.1.

Internet

Spider

Indexer

Index Database

User Interface

Fig. 1. A sample view of a web spider and its components

From the Fig.1 a spider gets connects to the Internet
and supplies information for indexer which is responsible
to keep the information for queries. This information can
be kept in a database or can stay in memory for faster
results. Finally, a user gets connect to the search engine
through a user interface and queries the data in the
indexer.

One of the most crucial points of a search engine is
the indexer and the data arrangement during the data
storage and querying.

Sadi Evren SEKER
This paper has been published in SWWS12, Proceeding of Semantic Web and Web Services Conference, 2012,ISBN:1-60132-232-1, Volume 1, Pages: 73-77

The indexer implemented during this study can do:

• Web Parsing: is extracting the pure text from
HTML tags,

• Extracting Keywords: is creating a set of
keywords and removing duplicates and also
cleaning stop words (which are the words does
not effect the search like “and, or, a, an, etc.”),

• Inverted Indexing: creating an index from the
keywords to the web site links instead of keeping
keywords in each web site.

The number of queries in an indexer is greatly

higher than the number of insertions or updates. This
requires a data structure with better query performance
required in the indexer. This paper critiques the data
structures just after discussing the alternative data
structures. In the first chapter this discussion will be
ignited and the narrowing alternatives and
implementation and benchmarking will go on to the next
chapters.

2 Data Structure of Indexer

Indexer is the core data structure in the whole
project. The most complex and the most critical point is
the implementation of the Indexer. There are several
implementation possibilities. It is possible to implement a
hash indexer or a tree as an indexer. The problem can be
separated into three parts the performance of lookup in
the data structure, the performance of update and the
performance of memory management. Besides the
memory issues, since it is the hardware update as a
second choice, we have to concentrate on the time
performance. The discussion gets the performance of
lookup or update of the tree.

In a real living search engine, the probability of
lookup queries would be much more than the queries of
the insert or update. Besides the number of queries, the
users are directly affected from the search queries, the
worst update or worst insert query is not felt by the search
engine users. So we have following assumptions in the
indexer data structure design phase:

• Memory effectiveness can be sacrificed to time
performance

Search queries are much more important than the
update or insert queries

So according to the above criteria, we have listed all
possible trees in the data structures world in the analysis
phase. This section covers the possible tree
implementations.

By the definitions on analysis phase, the trees can be
grouped into 3 categories.

• B-tree family

• Spatial Access family (a special form of
tree Access)

• Binary tree family

Besides the above tree families, in this study we
have also concentrated suffix trees because of their
importance and reputation on the search engines.

So this study will mainly cover these 4 type of tree
implementations. Also the special case of the tree
structures gives better results. For example, the AVL tree
implementation yields better result than the most of the
binary tree implementations. The reason of better results
from AVL is the balancing of the tree. For example
holding n nodes in an ordinary binary tree and AVL tree
yields same worst cases O(log n) in time complexity of
algorithm or the O(n) in memory complexity of the
algorithm. But the AVL tree uses memory more efficient
since the tree is kept in balance. So in the comparison of
the AVL tree and an unbalanced binary tree, AVL yields
always better results.

The same results can be applied to the k-d tree
versus b-tree relation. The k-d tree implementation gives
a great variety of indexing over the classical b-tree
implementation. The complexity of k-d tree in the search
is O(n1-1/d +k), where d is the number of dimensions and
the k is the number of reported points. On the other hand
the complexity of a classical b-tree query is only O(log n).
So most of the cases the performance of k-d tree yields
better results.

On the other hand the suffix tree implementations
are built over several tree implementations. Most of the
cases suffix tree can be built over a balanced search tree.
The balanced search tree implementation gives the best
result on the most of the cases. The complexity of suffix
tree implementation over a balanced search tree
implementation is O(log x) for the insertion and lookup
where x is the number of alphabets in the language. On
the other hand the complexity of traversal is O(1) which
is a great speed up for the indexer of the search engine. So
the next step would be an implementation of suffix tree
over k-d tree or AVL tree structures.

 2.1 Data structure of index database
Index database is responsible of managing huge

indexes in the memory. Since the amount of ram is
limited and the uptime of computers is not reliable, the
index database is responsible of keeping the index data
into the secondary storage (because of the limitations on

the project). The primary focusing data unit is the indexer
in the search engine. The indexer database and other data
structures are classified as the secondary targets. For the
time being, the simplest solution for the index databases it
the implementation of a simple file database holding
objects in it.

Fig. 2. Deployment of indexer database

The stream structure gives the ability of keeping

serializable objects in the files. So the search engine will
dump the index file in the memory to the hard disk in
given time periods. The biggest problem about this
implementation is the difficulties in the dividing tree into
sub parts. This operation is extremely important while the
index size is greater than the primary memory. Besides of
dividing into sub parts the index database should keep a
track of the priorities in the memory and keep the higher
priority in the memory always while selecting between
low hit and high hit accesses.

Also another type of implementation is the division
of whole tree in to parallel or distributed computers. This
approach has many benefits besides the increasing
primary memory size. The computation and indexing can
be divided between the computers as well.

3 Test and Performance Evaluations

This section will cover the tests, debugging and also
the benchmarking and appropriate of several indexer
implementations.

The basic time measurement tool in JAVA is taking
the current system time by using the system library.
Unfortunately in my testing environment the results of
currentTimeMilis() function from the system library did
not yield good results for the time measurement. There

were lots of 0 results between the starting and ending time
of tree accesses.

Because of these unstable results I have switched to
the getting nano second function from the system library
again. This function is nanoTime() from the java.lang
package.

This second try resulted a valuable numbers and I
have added these outputs in 3 different global cumulative
variables. Each of these variables holds one of the tree
operations. The results are also displayed into the screen
when the print times button is clicked.

 long
temp=System.nanoTime();

 trie.addString(key,address)
;
 temp-=System.nanoTime();
 trieTime += temp;
 temp=System.nanoTime();
 avl.insert(key,address);
 temp-=System.nanoTime();
 avlTime += temp;
 keyURL a[]= new keyURL[4];
 temp=System.nanoTime();
 bpt.add(new
keyURL(key,address));
 temp-=System.nanoTime();
 bptTime+=temp;

Fig. 3. Coding of benchmarking

In Fig.3 code piece demonstrates the calculation of
running time of each of the tree operations. The variable
“temp” is created and filled up with the system time in the
first line. After the creation of this variable the add
function of the “trie“ tree is called. The return of the
function is also the calculation of the next system time
and getting difference from the temp variable. The same
operation is repeated for the “bplustree” and the “avl” tree
implementations.

Please note that the above code is in a function and
called every time when an insertion operation is needed in
the tree. So the variables in the above code will keep the
cumulative time of each of the tree insert operations.

Also similar to the above insertion operations, the
time for each search operation is calculated again. The
time measurement of the search operations is same and
the value of the search time is added to the cumulative
variables holding the time for each data structure.

Indexer on the
primary storage

A database
implementation
on secondary

storage
(possibly files

for this Project)

Serialize
d Stream

Writer/read
er

Fig. 4. Time Efficiency of the data structures

Fig.4 holds the tests run over 21 sites with 5
keyword search from each site. The sites are tested by
time manner and the cumulative time value is displayed
on the y axis of the Fig.4. The dataset of the above graph
can be demonstrated as Table 1.

Table 1. A sample view of cse.yeditepe.edu.tr domain search
with 5 keywords.

SiteName / Keyword Time of
Trie

Time of
AVL

Time of
BPT

Site:
cse.yeditepe.edu.tr

539082176 552533245 483070
868

Keyword: Faculty +536991 +523530 +51961
Keyword: Exchange +5565055 +7971125 +28216
Keyword: Studying +7286401 +7262935 +31009
Keyword: Application +1673956 +1623670 +84926

The graph is built over the above tables for each of

the 21 web sites. So the web site is first indexed with
three different tree data structures and than the keywords
are tested as the above sample.

4. Conclusion

This project covers a basic web spider
implementation with various indexer possibilities. The
test results have shown us the best possible tree
implementation for the search engines is the Trie
implementation. Its nature also gives the signal of such a
result and I have tested this case via this project. Also the
bplus tree and AVL has yielded worse results than the
Trie but they are very close to each other.

Acknowledgement

This study was supported by Scientific Research
Projects Coordination Unit of Istanbul University. Project
number YADOP-16728.

References

[1] Koulutus- and Konsultointipalvelu KK Mediat, from
SEOGuy.com 2004

[2] Open Directory Project (Directory of Mozilla), 2007
[3] Main source for information on the robots.txt Robots

Exclusion Standard and other articles about writing well-
behaved Web robots. www.robotstxt.org , 2007

[4] Metasearch.com , a search engine working over the currently
implemented search engines. 2007

[5] Sergey Brin and Lawrence Page, The Anatomy of a Large-
Scale Hypertextual

Web Search Engine, Computer Science Department, Stanford
University, 1999

[6] National Institute of Standards and Technology nist.gov,
2007

[7] TUSSE (Turkish Speaking Search Engine) ,
http://www.shedai.net/tusse, 2008[8] G.M.

[8] Adelson-Velsky and E.M. Landis, An algorithm for the
organization of information, Soviet Mathematics 3 (1962),
pp. 1259–1263.

